direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×D19, C19⋊C23, C38⋊C22, (C2×C38)⋊3C2, SmallGroup(152,11)
Series: Derived ►Chief ►Lower central ►Upper central
C19 — C22×D19 |
Generators and relations for C22×D19
G = < a,b,c,d | a2=b2=c19=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
(1 75)(2 76)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 39)(33 40)(34 41)(35 42)(36 43)(37 44)(38 45)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(39 76)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 60)(16 59)(17 58)(18 76)(19 75)(20 48)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 40)(29 39)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)
G:=sub<Sym(76)| (1,75)(2,76)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,39)(33,40)(34,41)(35,42)(36,43)(37,44)(38,45), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(39,76)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(17,58)(18,76)(19,75)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)>;
G:=Group( (1,75)(2,76)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,39)(33,40)(34,41)(35,42)(36,43)(37,44)(38,45), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(39,76)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(17,58)(18,76)(19,75)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49) );
G=PermutationGroup([[(1,75),(2,76),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,39),(33,40),(34,41),(35,42),(36,43),(37,44),(38,45)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(39,76),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,60),(16,59),(17,58),(18,76),(19,75),(20,48),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,40),(29,39),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49)]])
C22×D19 is a maximal subgroup of
D38⋊C4 D19⋊A4
C22×D19 is a maximal quotient of D76⋊5C2 D4⋊2D19 D76⋊C2
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 19A | ··· | 19I | 38A | ··· | 38AA |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 19 | ··· | 19 | 38 | ··· | 38 |
size | 1 | 1 | 1 | 1 | 19 | 19 | 19 | 19 | 2 | ··· | 2 | 2 | ··· | 2 |
44 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D19 | D38 |
kernel | C22×D19 | D38 | C2×C38 | C22 | C2 |
# reps | 1 | 6 | 1 | 9 | 27 |
Matrix representation of C22×D19 ►in GL3(𝔽191) generated by
190 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 190 | 0 |
0 | 0 | 190 |
1 | 0 | 0 |
0 | 33 | 1 |
0 | 73 | 118 |
1 | 0 | 0 |
0 | 118 | 190 |
0 | 171 | 73 |
G:=sub<GL(3,GF(191))| [190,0,0,0,1,0,0,0,1],[1,0,0,0,190,0,0,0,190],[1,0,0,0,33,73,0,1,118],[1,0,0,0,118,171,0,190,73] >;
C22×D19 in GAP, Magma, Sage, TeX
C_2^2\times D_{19}
% in TeX
G:=Group("C2^2xD19");
// GroupNames label
G:=SmallGroup(152,11);
// by ID
G=gap.SmallGroup(152,11);
# by ID
G:=PCGroup([4,-2,-2,-2,-19,2307]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^19=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export