Copied to
clipboard

G = C22xD19order 152 = 23·19

Direct product of C22 and D19

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22xD19, C19:C23, C38:C22, (C2xC38):3C2, SmallGroup(152,11)

Series: Derived Chief Lower central Upper central

C1C19 — C22xD19
C1C19D19D38 — C22xD19
C19 — C22xD19
C1C22

Generators and relations for C22xD19
 G = < a,b,c,d | a2=b2=c19=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 230 in 32 conjugacy classes, 21 normal (5 characteristic)
Quotients: C1, C2, C22, C23, D19, D38, C22xD19
19C2
19C2
19C2
19C2
19C22
19C22
19C22
19C22
19C22
19C22
19C23

Smallest permutation representation of C22xD19
On 76 points
Generators in S76
(1 75)(2 76)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 57)(32 39)(33 40)(34 41)(35 42)(36 43)(37 44)(38 45)
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 20)(10 21)(11 22)(12 23)(13 24)(14 25)(15 26)(16 27)(17 28)(18 29)(19 30)(39 76)(40 58)(41 59)(42 60)(43 61)(44 62)(45 63)(46 64)(47 65)(48 66)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 73)(56 74)(57 75)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)(58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76)
(1 74)(2 73)(3 72)(4 71)(5 70)(6 69)(7 68)(8 67)(9 66)(10 65)(11 64)(12 63)(13 62)(14 61)(15 60)(16 59)(17 58)(18 76)(19 75)(20 48)(21 47)(22 46)(23 45)(24 44)(25 43)(26 42)(27 41)(28 40)(29 39)(30 57)(31 56)(32 55)(33 54)(34 53)(35 52)(36 51)(37 50)(38 49)

G:=sub<Sym(76)| (1,75)(2,76)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,39)(33,40)(34,41)(35,42)(36,43)(37,44)(38,45), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(39,76)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(17,58)(18,76)(19,75)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49)>;

G:=Group( (1,75)(2,76)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,57)(32,39)(33,40)(34,41)(35,42)(36,43)(37,44)(38,45), (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,20)(10,21)(11,22)(12,23)(13,24)(14,25)(15,26)(16,27)(17,28)(18,29)(19,30)(39,76)(40,58)(41,59)(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,73)(56,74)(57,75), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76), (1,74)(2,73)(3,72)(4,71)(5,70)(6,69)(7,68)(8,67)(9,66)(10,65)(11,64)(12,63)(13,62)(14,61)(15,60)(16,59)(17,58)(18,76)(19,75)(20,48)(21,47)(22,46)(23,45)(24,44)(25,43)(26,42)(27,41)(28,40)(29,39)(30,57)(31,56)(32,55)(33,54)(34,53)(35,52)(36,51)(37,50)(38,49) );

G=PermutationGroup([[(1,75),(2,76),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,57),(32,39),(33,40),(34,41),(35,42),(36,43),(37,44),(38,45)], [(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,20),(10,21),(11,22),(12,23),(13,24),(14,25),(15,26),(16,27),(17,28),(18,29),(19,30),(39,76),(40,58),(41,59),(42,60),(43,61),(44,62),(45,63),(46,64),(47,65),(48,66),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,73),(56,74),(57,75)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57),(58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76)], [(1,74),(2,73),(3,72),(4,71),(5,70),(6,69),(7,68),(8,67),(9,66),(10,65),(11,64),(12,63),(13,62),(14,61),(15,60),(16,59),(17,58),(18,76),(19,75),(20,48),(21,47),(22,46),(23,45),(24,44),(25,43),(26,42),(27,41),(28,40),(29,39),(30,57),(31,56),(32,55),(33,54),(34,53),(35,52),(36,51),(37,50),(38,49)]])

C22xD19 is a maximal subgroup of   D38:C4  D19:A4
C22xD19 is a maximal quotient of   D76:5C2  D4:2D19  D76:C2

44 conjugacy classes

class 1 2A2B2C2D2E2F2G19A···19I38A···38AA
order1222222219···1938···38
size1111191919192···22···2

44 irreducible representations

dim11122
type+++++
imageC1C2C2D19D38
kernelC22xD19D38C2xC38C22C2
# reps161927

Matrix representation of C22xD19 in GL3(F191) generated by

19000
010
001
,
100
01900
00190
,
100
0331
073118
,
100
0118190
017173
G:=sub<GL(3,GF(191))| [190,0,0,0,1,0,0,0,1],[1,0,0,0,190,0,0,0,190],[1,0,0,0,33,73,0,1,118],[1,0,0,0,118,171,0,190,73] >;

C22xD19 in GAP, Magma, Sage, TeX

C_2^2\times D_{19}
% in TeX

G:=Group("C2^2xD19");
// GroupNames label

G:=SmallGroup(152,11);
// by ID

G=gap.SmallGroup(152,11);
# by ID

G:=PCGroup([4,-2,-2,-2,-19,2307]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^19=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of C22xD19 in TeX

׿
x
:
Z
F
o
wr
Q
<